Consider a real symmetric matrix $P \in \mathbb{R}^{n \times n}$, a column vector $x \in \mathbb{R}^{n}$, and $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are eigenvalues of P.
Prove that

$$
\lambda_{1} x^{T} x \leq x^{T} P x \leq \lambda_{n} x^{T} x
$$

Proof:
Based on Theorem 3.6 (see Appendix), P can be written as

$$
P=Q V Q^{T}
$$

where Q is an orthogonal matrix and V is a diagonal matrix. The diagonal elements of V are the eigenvalues of P, i.e., $V=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]$.

Denote $Q=\left[\begin{array}{lll}q_{1} & \cdots & q_{n}\end{array}\right]$ and then

$$
\begin{gathered}
x^{T} P x=x^{T} Q V Q^{T} x=\left(Q^{T} x\right)^{T} V\left(Q^{T} x\right)=\left[\begin{array}{lll}
\left(q_{1}^{T} x\right)^{T} & \cdots & \left(q_{n}^{T} x\right)^{T}
\end{array}\right] V\left[\begin{array}{c}
q_{1}^{T} x \\
\vdots \\
q_{n}^{T} x
\end{array}\right] \\
=\sum_{i=1}^{n} \lambda_{i}\left(\left(q_{i}^{T} x\right)^{T} q_{i}^{T} x\right)=\sum_{i=1}^{n} \lambda_{i}\left(x^{T} q_{i} q_{i}^{T} x\right)
\end{gathered}
$$

Note that $x^{T} q_{i} q_{i}^{T} x$ is a scalar and nonnegative, so it follows that

$$
\begin{gathered}
\sum_{i=1}^{n} \lambda_{i}\left(x^{T} q_{i} q_{i}^{T} x\right) \leq \lambda_{n}\left(\sum_{i=1}^{n} x^{T} q_{i} q_{i}^{T} x\right)=\lambda_{n} x^{T}\left(\sum_{i=1}^{n} q_{i} q_{i}^{T}\right) x \\
=\lambda_{n} x^{T}\left(\left[\begin{array}{lll}
q_{1} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{c}
q_{1}^{T} \\
\vdots \\
q_{n}^{T}
\end{array}\right]\right) x=\lambda_{n} x^{T}\left(Q Q^{T}\right) x
\end{gathered}
$$

Since Q is the orthogonal matrix, $Q Q^{T}=I$. Therefore, $x^{T} P x \leq \lambda_{n} x^{T} x$. Similarly, we can obtain that $x^{T} P x \geq \lambda_{1} x^{T} x$. This completes the proof.

Appendix:

Theorem 3.6

For every real symmetric matrix \mathbf{M}, there exists an orthogonal matrix \mathbf{Q} such that

$$
\mathbf{M}=\mathbf{Q D Q}^{\prime} \quad \text { or } \mathbf{D}=\mathbf{Q}^{\prime} \mathbf{M Q}
$$

where \mathbf{D} is a diagonal matrix with the eigenvalues of \mathbf{M}, which are all real, on the diagonal.
This is from a book named Linear System Theory and Design, third edition. The author is Chi-Tsong Chen.

